Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

نویسندگان

  • Nurgul Balci
  • Benjamin Brunner
  • Alexandra V. Turchyn
چکیده

Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62-) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4-S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4-S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between -1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4-S0 of -0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4-H2O) of -4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid mine drainage biogeochemistry at Iron Mountain, California

The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage ~AMD! generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial popu...

متن کامل

Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and me...

متن کامل

Assessing Natural Attenuation in AMD Contaminated Aquifers – “The Integrative Dual Isotope Approach”

Completely separated sulfur isotope signature frequency distributions for sedimentary sulfide and coexisting inorganic sulfate proved the field scale hydrochemical dominance of bacterial sulfate reduction and thus a strong overall natural attenuation potential of the aquifer section. Consequently, a significant improvement of the water quality and an eventually complete attenuation of the acid ...

متن کامل

Fire and Brimstone: The Microbially Mediated Formation of Elemental Sulfur Nodules from an Isotope and Major Element Study in the Paleo-Dead Sea

We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The ...

متن کامل

Prediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study

This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017